
N9o:25525

Knowledge Representation to Support

Reasoning Based on Multiple Models

April Gillam, Jorge P. Seidel

Computer Science Laboratory

The Aerospace Corporation

Los Angeles, CA 90009

and Alice C. Parker

Dept. of Electrical Engineering - Systems

University of Southern California

This work was supported by the

Aerospace Sponsored Research Program.

I ABSTRACT

Model Based Reasoning is a powerful tool used to design and analyze

systems, which are often composed of numerous interactive, interre-

lated subsystems. Models of the subsystems are written independently

and may be used together while they are still under development. Thus

the models are not static. They evolve as information becomes obso-

lete, as improved artifact descriptions are developed, and as system

capabilities change. We are using three methods to support knowl-

edge/data base growth, to track the model evolution, and to handle

knowledge from diverse domains. First, the representation methodol-

ogy is based on having pools, or types, of knowledge from which each

model is constructed. In addition information is explicit. This includes

the interactions between components, the description of the artifact

structure, and the constraints and limitations of the models. The third

principle we have followed is the separation of the data and knowledge

from the infereneing and equation solving mechanisms. This method-

ology is used in two distinct knowledge-based systems: one for the

design of space systems and another for the synthesis of VLSI circuits.

It has facilitated the growth and evolution of our models, made ac-

countability of results explicit, and provided credibility for the user

community. These capabilities have been implemented and are being

used in actual design projects.

2 INTRODUCTION

Model Based Reasoning is a powerful tool used to design and analyze

systems composed of numerous interactive, interrelated subsystems.

The development of these complex systems requires the follo_bJg ba-

sic steps: specification, modeling, and physical implementation. The

specification itself covers three description levels: behavior, logic and

structure. The ease with which knowledge is utilized depends on the

representation scheme of both the knowledge and the design date£: "For

example, a query to retrieve information might be a one line statement

or might entail making several queries, each of which depends on inter-

preting the results of the previous query. Finding all possible modules

active during a particular time sequence might require searching the

entire design or might be a single table-lookup query. This paper de-

scribes a knowledge representation scheme that can be used at both

the specification and model levels. Reasoning from models may cut

across any of the levels mentioned and combine information of different
models.

One difficulty in knowledge representation is caused by the dy-
namic nature of the information. The models evolve with the addition

and deletion of information, the enhancement of capabilities in the ar-

tifact being designed, and the development of better model concepts.

Also, the relationships between the models and the knowledge associ-

ated with them may evolve.

In this paper, we will address how our system of knowledge repre-

sentation supports the following aspects of modelling:

• Synthesis of the mode/from behavioral specification

• Interactions between models

• Evolving models

• Representation of knowledge from diverse domains

The knowledge representation must be capable of expressing the

behavior and structure of the system or artifact being designed. These

may be described in terms of models which in turn are composed of

many different kinds of information, such as equations, constraints,

and algorithms. As this information grows and changes it is important

to track the evolution. Work done early in a project frequently cannot

be used when one returns to that early design, made 6 months ago.

Without the models upon which the design decisions were made the

work may need to be duplicated using the current models. It would

be a tot simpler if the state of the models for each design were kept
and the changes were easily accessible. Few people remember whether

there were minor or major changes and when theyive been made. This

is especially true when dealing with a complex system which many

designers.

While this form of Model Based Reasoning (MBR) will support

many distinct design domains, disparate domains will be used here to

illustrate the concepts. The first involves a knowledge-based system,

VEHICLES [7] and [7], developed at the Aerospace Corp., that sup-

ports the conceptual design of space systems. There are several models

for the spacecraft subsystems and their environments (e.g. payload,

communications, launch, thermal, etc.). Integrating multiple models
that are developed by different people who have focused on different

aspects of the design, often at different levels as well, is quite challeng-
ing. The knowledge representatiou scheme we have developed makes

the problem tenable.

The second domain involves !llgh level synthesis of VLSI circuits

from behavioral level specifications. The knowledge model used in

KNOWledge MANager (KNOWMAN) (i.art of the Advanced Design

AutoMation (ADAM) system developed at the Uuiversity of Southern

California [?] and [?] and [?]) must support many types of knowledge

used in the various stages of automated synthesis of VLSI circuits

from behavioral descriptions. KNOWMAN consists of a representation

methodology for handling the design knowledge necessary for VLSI

Synthesis, the implementation of the knowledge representation schema

using an object oriented database model, and a set of Prolog expert
systems that utilize the data in the database.

219

PRECEDING PAGE BLANK NOT FILMED



The important aspect of this paper is not the specific implemen-

tations, but the general application of our proposed methodology to
these and other implementations. In Section 2, the basic scheme for

knowledge representation will be outlined, and the major concepts as-
sociated with the proposed methodology willbe stated. Section 3 will

present ap overview of the knowledge classificationstructure used in

our design systems. Section 4 willsummarize and present the status

of our work and discussrelatedproblems we are currentlyworking on.

3 REPRESENTATION SCHEME

Our scheme entails

• pooling knowledge types used in models

• tracking models for documentation and historical reference of

designs

• design history trace

• explicitrepresentationof the artifactstructure

• explicitrepresentationof the knowledge structure,labels

• separationof data and knowledge from processing

In many problem domains, complex representationalschemes are

necessary due to the complexity of the artifactsbeing designed [?]

and [?]. The inference engine, which uses the domain knowledge, also

requires knowledge about how a_d when to apply that knowledge. The

representation scheme includes

• models

• pools, or types, of knowledge

* procedural knowledge

• planning knowledge and

s meta knowledge.

Knowledge is grouped into categories, or pools, which contain all

instances of a given •category, such as equations or rules. Individual

elements from pools of knowledge can be associated with each model.

For example, in the design of a spacecraft subsystem, the same equa-

tion relating frequency to wavelength for electromagnetic radiation can

be associated with the model for an infrared detector payload as well

as with the communications subsystem model.

Building complex systems from specifications, which may be in-

complete or even inconsistent, requires flexible, extensjble models and

the capability to utilize the knowledge associated with those models.

A particular model and the knowledge associated with it may become

obsolete as new data becomes available. New capabilities might be

added to the system under design, requiring changes to the model. For
example, in VEHICLES, if a circular orbit is selected the orbit model•

will automatically delete all information (equations, rules, and design

configuration values) associated with elliptical orbits. Organizing the

knowledge into 'pools of knowledge', such as a pool of equations or a

pool of constraints, facilitates the addition of new knowledge categories

as well as new instances within a given pool, or type, of knowledge.

To ensure consistency and maintain credibility we have chosen to

explicitly represent the structure and associated knowledge of the arti-

fact being designed, the models and knowledge about the design, and
the representation scheme itself. Constraints and limitations about

the models as part of the knowledge representation are also explicitly

represented. For instance, each equation, in the pool of equations may
have

• a source (person or reference),

• the time and date itwas added,

• annotations (user readable),

• the assumptions upon which it is based and

• the conditions or limits for automatic validity checking.

A subset of equations (or rules, routines, tables, etc.) from the

(appropriate) pool is selected for each model. The model itself may

include information similar to that for the equations. This makes it

possible to keep track of past designs, even when the models have

changed. With this peripheral information, we can retrieve the exact

model used at any point in a design. This is important for understand-

ing why decisions were made. It might have been due to incomplete-

hesS of the models used. This also helps to identify how subsequent

cnhancements to the models may alter decisions and designs or what

technology breakthroughs are needed to meet requirements. For exam-

ple, in designing a phased array radar many transmit/receive modules

are needed to provide sufficient power. A nominal value of 0.3 watts

per module would take over 13,000 modules to supply 4000 watts.

However, if we could only "afford" the weight of 8000 modules, wc

would need a technology improvement in modules for them to supply

0.5 watts (hopefully at the same weight).

It is possible to enhance, modify, restructure, remove or prune

existing knowledge. Also, the models and associated knowledge can
include redundant information in the form of different perspectives or

different representations by linking associated concepts. Knowledge

that is linked together cannot be automatically removed. An item

which is replaced by an equivalent item will automatically have all

links updated.

A useful feature in design is traceability. Tracing results makes it

possible to identify how each result was derived. This design history

provides the source of the data, which could be an equation, a rule, or

a designer and the date the result was acquired. This automatically

makes it possible to reconstruct the design path, the knowledge and

the sequence of its application, which led to earlier design concepts,

as well as to the current design concept.

Labels are assigned to the various procedures, facts and models.

These labels are made as specific as possible to ensure that rich seman-

tic content will be evident in the state of the program execution, or the

state of the knowledge base. The traceability of results is facilitated

when the data source is pgm_photon_flux or routine_weight.,growth. It
also makes the results more credible, because the user untrained in AI

techniques can immediately see what factors (e.g. equations, routines)

were used in the design.

Frequently, new models are incorporated that only partially overlap

with the existing models. This is difficult since one model cannot

simply be replaced with another. One type of knowledge that has been

quite helpful in facilitating the combination of models is the explicit

representation of the linked parameters, Le. the parameters that are

used in a particular model, but supplied from other models, routines,

or tables. For instance, the total weight of the spacecraft relies on

the individual subsystem weights. Replacement of a subsystem model

must still provide the total weight of that subsystem.

Most of the integration of models is done by hand. As our systems

continue to be used in additional design projects we are investigating

what information would be needed to automate a greater portion of

the prr_-e_. Verifying the consistency and completeness of the knowl-

edge is one aspect currently being worked on. It is already possible to

identify conflicts when equations are being solved. A symbolic equa-

tion solver will flag problems when values are inconsistent.

The interface, between the design program and the knowledge base,

can itself be modified if the knowledge base changes since it is just an-

other type of knowledge. Thus, changes to the knowledge base are

accompanied by changes to the interface portion of the knowledge

base. The interface knowledge can be used to specify which portions

of the updated knowledge base are applicable, thus allowing the proper

knowledge from all domains to be utilized. This form of meta knowl-

edge is necessary with a rapidly evolving model or knowledge base [?].

However, it makes the verification of knowledge base correctness, com-

pleteness and consistency much more difficult, since there is this meta

knowledge which must also be verified since it is susceptible problems

as the knowledge.

220



4 THE KNOWLEDGE HIERARCHY

Design knowledge, which addresses how to do design, what the de-

sign is and the requirements to be met, may be represented in a sub-

type/supertype hierarchy. KNOWMAN, used for synthesis of VLSI

circuits, uses an object oriented database, which makes the hierarchi-

cal representation very natural. In VEHICLES, which uses a relational

database, the hierarchical structure also is used. It provides a means

to clearly represent the structure of the artifact being designed. It also

makes the organization of complicated and voluminous knowledge and

data much clearer and easier to access. Two subtypes of knowledge

are declarative and procedural. Both of these contain many subtypes

in a rich and tangled hierarchy.
D_wlarative knowledge includes state knowledge, parameterized knowl-

edge, knowledge about goals and assertions. Most statements of facts,

descriptions of relationships between objects, and characteristics of

objects are members of this type.

State knowledge is knowledge about all of the aspects of the design

space: past, present and potential. This is a complex area of knowledge
since there are so many aspects that need to be considered. We have

selected several candidate areas for inclusion in this type of knowledge:

design space state history

design paths current design state
state-dependent data design approaches

design domains design drivers

design styles design situations

design evaluation design decisions

Parameterized knowledge is particularly important in MBR since

the data contained is used to fine tune the models. Equations, tables,

ordered lists, graphic knowledge, definitions and image processing data

are all examples of the types of knowledge included in this category.

Also included are the ranges and units of the attributes associated
with the model.

The hierarchy based on the goals associated with the specification

being used to drive tile planner includes constraints, goals, lower and

upper bounds, best achievable designs and actual designs.

Our work in knowledge classification and interaction is ongoing.

Other types of knowledge spans many levels, from primitives to higher

level constructs. The classification scheme is not rigid, so that the

groupings m_y vary depending on the context. These categories in-
elude:

• Symbols, operators, numerics, strings Equations, expressions,
functions

• TaMes, lists, sets

• Rules, constraints, requirements, goals, scenarios

• Definitions, annotations Instances, data, constants, enumerated
options

• Models, frames, scripts

• Graphics, image processing (postscript, gift, pie)

• Report styles, graph styles, highlight items

Under the domain of procedural knowledge, we see the subtypes

of heuristics, algorithms, operators, reasoning, rule usage and plan-

ning. In KNOWMAN the procedural knowledge is stored in the form

of hierarchical data flow graphs where specific procedures are associ-
ated with the nodes, and values flow between the nodes. Declarative

knowledge can be associated with the procedures by binding specific

Prolog code to a given node based on the current state of the design.

5 SUMMARY AND STATUS

We have presented a representational scheme that makes use of mod-

els based on pools of knowledge. The structure of the knowledge is

semantically rich. This is apparent in the wealth of types, or pool_ t

and the man)' levels of knowledge that can be represented. Explicit

representation will facilitate checking the consistency and ensuring ap-

propriate applicability of information in the knowledge base.

The separation of the inference engine from tile knowledge base

makes possible the storage of the data in a form that is easily ex-

tensible, easily reorganizable and extremely flexible. It also makes it

possible to have work proceed on both in parallel.

Complex interactions between subsystems are handled by explicit

representation. This _'acilitates managing the evolution of the mod-

els, but it also makes it evident that there is a need for a consistency

checker for the knowledge base to ensure the completeness and consis-

tency of the knowledge.

The non-monotonic nature of the evolving models necessitates in-

eluding what and when changes occur. This makes it possible to cap-

ture design history, providing traceability, and makes the model state

dependence explicit. It also helps maintain credibility with the user.

The methodology described here has been, to a large extent, imple-

mented. We have followed the philosophy of separating the knowledge

from the inference engine. This became a necessity as the represen-

tation scheme frequently changed as new cpaabilities are continually

being incorporated. This

There are some caveats which should be mentioned. As the gener-

ality and power of the MBR system grows the performance, especially
in terms of speed, decreases. There is also considerable overhead in-

curred by checking for validity and consistency. The scope of the

knowledge represented, which includes both the knowledge itself and

its applicability conditions, requires more storage space and necessi-
tates more work in incorporating new models or system capabilities.

We are currently investigating solutions to these problems, and see

great potential in MBR.

References

[1] K. Bellman and A. Gillam, "A knowledge-based approach to the

conceptual design of space systems," in Proceedings of the 1988

Eastern MultiConference, pp. 23-27, Mar. 1988.

A. Gillam, "A knowledge-based approach to planning the design
of space systems_" in Proceedings of the 1989 Eastern MultiCon-

ference, 1989.

[3] tt. Afsarmanexh, The 3DIS, An Eztensible Object Oriented Frame-

work for Information Management. PhD thesis, USC, 1985.

[4] D. Knapp, A Planning Model of the Design Process. PhD thesis,

USC, 1986.

[5] D. Knapp and A. Parker, "A unified representation for design in-

formation," in Proceedings of the 1985 Conference on Hardware

Description Languages, [FIP, 1985.

J. Doyle, "A truth maintenance system," AI Journal, vol. 12, no. 3,
1979.

E. Shortliffe, Computer-Based Medical Consultations: MYCIN.

Elsevier, NY, 1976.

R. Davis, "Applications of meta-level knowledge to the construc-

tion, maintenance, and use of large knowledge bases," in [IPP

Memo and AI Memo, (Stanford University), 1976.

[2]

[6]

[71

[81

221




